Effective and Efficient Similarity Searching in Motion Capture Data

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

SEDMIDUBSKÝ Jan ELIÁŠ Petr ZEZULA Pavel

Rok publikování 2018
Druh Článek v odborném periodiku
Časopis / Zdroj Multimedia Tools and Applications
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/s11042-017-4859-7
Obor Informatika
Klíčová slova Motion capture data retrieval;Effective similarity measure;Efficient indexing;k-NN query;Motion image;Convolutional neural network;Fixed-size motion feature
Popis Motion capture data describe human movements in the form of spatio-temporal trajectories of skeleton joints. Intelligent management of such complex data is a challenging task for computers which requires an effective concept of motion similarity. However, evaluating the pair-wise similarity is a difficult problem as a single action can be performed by various actors in different ways, speeds or starting positions. Recent methods usually model the motion similarity by comparing customized features using distance-based functions or specialized machine-learning classifiers. By combining both these approaches, we transform the problem of comparing motions of variable sizes into the problem of comparing fixed-size vectors. Specifically, each rather-short motion is encoded into a compact visual representation from which a highly descriptive 4,096-dimensional feature vector is extracted using a fine-tuned deep convolutional neural network. The advantage is that the fixed-size features are compared by the Euclidean distance which enables efficient motion indexing by any metric-based index structure. Another advantage of the proposed approach is its tolerance towards an imprecise action segmentation, the variance in movement speed, and a lower data quality. All these properties together bring new possibilities for effective and efficient large-scale retrieval.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.