DGRMiner: Anomaly Detection and Explanation in Dynamic Graphs

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

VACULÍK Karel POPELÍNSKÝ Lubomír

Rok publikování 2016
Druh Článek ve sborníku
Konference Advances in Intelligent Data Analysis XV - 15th International Symposium, IDA 2016
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-319-46349-0_27
Obor Informatika
Klíčová slova graph mining; data mining; dynamic graphs; rule mining; anomaly detection; outlier detection; anomaly explanation
Popis Ubiquitous network data has given rise to diverse graph mining and analytical methods. One of the graph mining domains is anomaly detection in dynamic graphs, which can be employed for fraud detection, network intrusion detection, suspicious behaviour identification, etc. Most existing methods search for anomalies rather on the global level of the graphs. In this work, we propose a new anomaly detection and explanation algorithm for dynamic graphs. The algorithm searches for anomaly patterns in the form of predictive rules that enable us to examine the evolution of dynamic graphs on the level of subgraphs. Specifically, these patterns are able to capture addition and deletion of vertices and edges, and relabeling of vertices and edges. In addition, the algorithm outputs normal patterns that serve as an explanation for the anomaly patterns. The algorithm has been evaluated on two real-world datasets.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.