Principal solutions at infinity for time scale symplectic systems without controllability condition
Název česky | Hlavní řešení v nekonečnu pro symplektické systémy na časových škálách bez podmínky kontrolovatelnosti |
---|---|
Autoři | |
Rok publikování | 2016 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Journal of Mathematical Analysis and Applications |
Fakulta / Pracoviště MU | |
Citace | |
Doi | http://dx.doi.org/10.1016/j.jmaa.2016.06.057 |
Obor | Obecná matematika |
Klíčová slova | Symplectic system; Time scale; Linear Hamiltonian system; Principal solution at infinity; Controllability; Nonoscillation |
Popis | V tomto článku zavádíme nový koncept hlavního řešení v nekonečnu pro neoscilatorické symplektické systémy na časových škálách. Hlavní přínos spočívá v tom, že nepředpokládáme obvyklou podmínku kontrolovatelnosti (či normality), která se standardně předpokládá v této teorii v současné literatuře. Ukazujeme, že hlavní řešení v nekonečnu lze klasifikovat podle jejich eventuální hodnosti a že tato hlavní řešení v nekonečnu existují pro všechny hodnosti mezi explicitně danou minimální a maximální hodnotou. Nejmenší hodnota je spojena s eventuálním řádem abnormality systému a vede na tzv. minimální hlavní řešení v nekonečnu. Ukazujeme, že jednoznačnost hlavního řešení v nekonečnu platí pouze pro minimální hlavní řešení. V této práci sjednocujeme a rozšiřujeme na libovolné časové škály nedávno objevenou teorii hlavních řešení v nekonečnu pro obecné abnoramální (spojité) lineární hamiltonovské systémy a (diskrétní) symplektické systémy. Tato nová teorie na časových škálách také ukazuje, že v některých výsledcích ze spojité teorie lze uvažované předpoklady zjednodušit. |
Související projekty: |