Large-scale Image Retrieval using Neural Net Descriptors

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

NOVÁK David BATKO Michal ZEZULA Pavel

Rok publikování 2015
Druh Článek ve sborníku
Konference Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www ACM Portal
Doi http://dx.doi.org/10.1145/2766462.2767868
Obor Informatika
Klíčová slova metric indexing; deep convolutional neural network; contentbased image retrieval; k-NN search
Popis One of current big challenges in computer science is development of data management and retrieval techniques that would keep pace with the evolution of contemporary data and with the growing expectations on data processing. Various digital images became a common part of both public and enterprise data collections and there is a natural requirement that the retrieval should consider more the actual visual content of the image data. In our demonstration, we aim at the task of retrieving images that are visually and semantically similar to a given example image; the system should be able to online evaluate k nearest neighbor queries within a collection containing tens of millions of images. The applicability of such a system would be, for instance, on stock photography sites, in e-shops searching in product photos, or in collections from a constrained Web image search.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.