ARResT/AssignSubsets: a novel application for robust subclassification of chronic lymphocytic leukemia based on B cell receptor IG stereotypy

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

BYSTRÝ Vojtěch AGATHANGELIDIS Andreas BIKOS Vasileios SUTTON Lesley Ann BALIAKAS Panagiotis HADZIDIMITRIOU Anastasia STAMATOPOULOS Kostas DARZENTAS Nikos

Rok publikování 2015
Druh Článek v odborném periodiku
Časopis / Zdroj Bioinformatics
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www http://bioinformatics.oxfordjournals.org/content/31/23/3844
Doi http://dx.doi.org/10.1093/bioinformatics/btv456
Obor Biochemie
Klíčová slova PATHOGENETIC IMPLICATIONS; IMMUNOGLOBULIN; GENES
Popis Motivation: An ever-increasing body of evidence supports the importance of B cell receptor immunoglobulin (BcR IG) sequence restriction, alias stereotypy, in chronic lymphocytic leukemia (CLL). This phenomenon accounts for similar to 30% of studied cases, one in eight of which belong to major subsets, and extends beyond restricted sequence patterns to shared biologic and clinical characteristics and, generally, outcome. Thus, the robust assignment of new cases to major CLL subsets is a critical, and yet unmet, requirement. Results: We introduce a novel application, ARResT/AssignSubsets, which enables the robust assignment of BcR IG sequences from CLL patients to major stereotyped subsets. ARResT/AssignSubsets uniquely combines expert immunogenetic sequence annotation from IMGT/V-QUEST with curation to safeguard quality, statistical modeling of sequence features from more than 7500 CLL patients, and results from multiple perspectives to allow for both objective and subjective assessment. We validated our approach on the learning set, and evaluated its real-world applicability on a new representative dataset comprising 459 sequences from a single institution.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.