Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin–spin interactions

Logo poskytovatele
Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

VAVRINSKÁ Andrea ZELINKA Jiří ŠEBERA Jakub SYCHROVSKÝ Vladimír FIALA Radovan BOELENS Rolf SKLENÁŘ Vladimír TRANTÍREK Lukáš

Rok publikování 2016
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of biomolecular NMR
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www http://link.springer.com/article/10.1007/s10858-015-0005-x
Doi http://dx.doi.org/10.1007/s10858-015-0005-x
Obor Biofyzika
Klíčová slova Nucleic acid; Self-alignment; Magnetic susceptibility; Scalar coupling; Dipolar coupling; Karplus equation
Popis Heteronuclear and homonuclear direct (D) and indirect (J) spin-spin interactions are important sources of structural information about nucleic acids (NAs). The Hamiltonians for the D and J interactions have the same functional form; thus, the experimentally measured apparent spin-spin coupling constant corresponds to a sum of J and D. In biomolecular NMR studies, it is commonly presumed that the dipolar contributions to Js are effectively canceled due to random molecular tumbling. However, in strong magnetic fields, such as those employed for NMR analysis, the tumbling of NA fragments is anisotropic because the inherent magnetic susceptibility of NAs causes an interaction with the external magnetic field. This motional anisotropy is responsible for non-zero D contributions to Js. Here, we calculated the field-induced D contributions to 33 structurally relevant scalar coupling constants as a function of magnetic field strength, temperature and NA fragment size. We identified two classes of Js, namely 1JCH and 3JHH couplings, whose quantitative interpretation is notably biased by NA motional anisotropy. For these couplings, the magnetic field-induced dipolar contributions were found to exceed the typical experimental error in J-coupling determinations by a factor of two or more and to produce considerable over- or under-estimations of the J coupling-related torsion angles, especially at magnetic field strengths >12 T and for NA fragments longer than 12 bp. We show that if the non-zero D contributions to J are not properly accounted for, they might cause structural artifacts/bias in NA studies that use solution NMR spectroscopy.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.