Automated Cell Segmentation in Phase-Contrast Images based on Classification and Region Growing

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

STOKLASA Roman BÁLEK Lukáš KREJČÍ Pavel MATULA Petr

Rok publikování 2015
Druh Článek ve sborníku
Konference Proceedings of 2015 IEEE International Symposium on Biomedical Imaging, 2015.
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://ieeexplore.ieee.org/document/7164149
Doi http://dx.doi.org/10.1109/ISBI.2015.7164149
Obor Využití počítačů, robotika a její aplikace
Klíčová slova phase-contrast microscopy; segmentation; classification; superpixel; cells
Popis Cell segmentation in phase-contrast microscopy images remains a challenging problem because of the large variability in subcellular structures and imaging artifacts. In this paper, we present an approach to the automatic segmentation of tightly packed cells in phase-contrast images. We combine the classification of superpixels with the region-growing method to locate cell membrane boundaries. We demonstrate that such a combined approach is able to perform the task of cell detection and segmentation with a high level of precision. On the presented dataset, we achieved 90% precision with 78% recall. The results indicate that this method is suitable for real biological applications.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.