De la Vallee Poussin type inequality and eigenvalue problem for generalized half-linear differential equation
Autoři | |
---|---|
Rok publikování | 2014 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Arch. Math. (Brno) |
Fakulta / Pracoviště MU | |
Citace | |
Obor | Obecná matematika |
Klíčová slova | Generalized half-linear differential equation; de la Vallee Poussin inequality; half-linear Euler differential equation |
Popis | We study the generalized half-linear second order differential equation via the associated Riccati type differential equation and Pr\"ufer transformation. We establish a de la Vall\'ee Poussin type inequality for the distance of consecutive zeros of a nontrivial solution and this result we apply to the ``classical'' half-linear differential equation regarded as a perturbation of the half-linear Euler differential equation with the so-called critical oscillation constant. In the second part of the paper we study a Dirichlet eigenvalue problem associated with the investigated half-linear equation. |
Související projekty: |