A colimit decomposition for homotopy algebras in Cat
Autoři | |
---|---|
Rok publikování | 2014 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Applied Categorical Structures |
Fakulta / Pracoviště MU | |
Citace | |
Doi | http://dx.doi.org/10.1007/s10485-012-9293-4 |
Obor | Obecná matematika |
Klíčová slova | Homotopy algebra flexible limit codescent object |
Přiložené soubory | |
Popis | Badzioch showed that in the category of simplicial sets each homotopy algebra of a Lawvere theory is weakly equivalent to a strict algebra. In seeking to extend this result to other contexts Rosický observed a key point to be that each homotopy colimit in SSet admits a decomposition into a homotopy sifted colimit of finite coproducts, and asked the author whether a similar decomposition holds in the 2-category of categories Cat. Our purpose in the present paper is to show that this is the case. |
Související projekty: |