Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation

Logo poskytovatele
Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

MISHRA Sushil Kumar KARA Mahmut ZACHARIAS Martin KOČA Jaroslav

Rok publikování 2014
Druh Článek v odborném periodiku
Časopis / Zdroj Glycobiology
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://glycob.oxfordjournals.org/content/24/1/70
Doi http://dx.doi.org/10.1093/glycob/cwt093
Obor Biochemie
Klíčová slova adaptive biasing force simulations; biasing potential; replica-exchange simulation; conformational sampling; molecular dynamics simulation; saccharides
Přiložené soubory
Popis Knowledge of the structure and conformational flexibility of carbohydrates in an aqueous solvent is important to improving our understanding of how carbohydrates function in biological systems. In this study, we extend a variant of the Hamiltonian replica-exchange molecular dynamics (MD) simulation to improve the conformational sampling of saccharides in an explicit solvent. During the simulations, a biasing potential along the glycosidic-dihedral linkage between the saccharide monomer units in an oligomer is applied at various levels along the replica runs to enable effective transitions between various conformations. One reference replica runs under the control of the original force field. The method was tested on disaccharide structures and further validated on biologically relevant blood group B, Lewis X and Lewis A trisaccharides. The biasing potential-based replica-exchange molecular dynamics (BP-REMD) method provided a significantly improved sampling of relevant conformational states compared with standard continuous MD simulations, with modest computational costs. Thus, the proposed BP-REMD approach adds a new dimension to existing carbohydrate conformational sampling approaches by enhancing conformational sampling in the presence of solvent molecules explicitly at relatively low computational cost.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.