Recurrent concepts in data streams classification

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

GAMA Joao KOSINA Petr

Rok publikování 2013
Druh Článek v odborném periodiku
Časopis / Zdroj Knowledge and Information Systems
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://dx.doi.org/10.1007/s10115-013-0654-6
Doi http://dx.doi.org/10.1007/s10115-013-0654-6
Obor Informatika
Klíčová slova Data streams; Concept drift; Meta-learning; Recurrent concepts
Popis This work addresses the problem of mining data streams generated in dynamic environments where the distribution underlying the observations may change over time. We present a system that monitors the evolution of the learning process. The system is able to self-diagnose degradations of this process, using change detection mechanisms, and self-repair the decision models. The system uses meta-learning techniques that characterize the domain of applicability of previously learned models. The meta-learner can detect recurrence of contexts, using unlabeled examples, and take pro-active actions by activating previously learned models. The experimental evaluation on three text mining problems demonstrates the main advantages of the proposed system: it provides information about the recurrence of concepts and rapidly adapts decision models when drift occurs.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.