Predicting pKa values from EEM atomic charges

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

SVOBODOVÁ VAŘEKOVÁ Radka GEIDL Stanislav IONESCU Crina-Maria SKŘEHOTA Ondřej BOUCHAL Tomáš SEHNAL David ABAGYAN Ruben A. KOČA Jaroslav

Rok publikování 2013
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Cheminformatics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://www.jcheminf.com/content/5/1/18
Doi http://dx.doi.org/10.1186/1758-2946-5-18
Obor Biochemie
Klíčová slova Dissociation constant; Quantitative structure-property relationship; QSPR; Partial atomic charges; Electronegativity equalization method; EEM; Quantum mechanics; QM
Přiložené soubory
Popis The acid dissociation constant pKa is a very important molecular property, and there is a strong interest in the development of reliable and fast methods for pKa prediction. We have evaluated the pKa prediction capabilities of QSPR models based on empirical atomic charges calculated by the Electronegativity Equalization Method (EEM). Specifically, we collected 18 EEM parameter sets created for 8 different quantum mechanical (QM) charge calculation schemes. Afterwards, we prepared a training set of 74 substituted phenols. Additionally, for each molecule we generated its dissociated form by removing the phenolic hydrogen. For all the molecules in the training set, we then calculated EEM charges using the 18 parameter sets, and the QM charges using the 8 above mentioned charge calculation schemes. For each type of QM and EEM charges, we created one QSPR model employing charges from the non-dissociated molecules (three descriptor QSPR models), and one QSPR model based on charges from both dissociated and non-dissociated molecules (QSPR models with five descriptors). Afterwards, we calculated the quality criteria and evaluated all the QSPR models obtained. We found that QSPR models employing the EEM charges proved as a good approach for the prediction of pKa (63% of these models had R2 > 0.9, while the best had R2 = 0.924). As expected, QM QSPR models provided more accurate pKa predictions than the EEM QSPR models but the differences were not significant. Furthermore, a big advantage of the EEM QSPR models is that their descriptors (i.e., EEM atomic charges) can be calculated markedly faster than the QM charge descriptors. Moreover, we found that the EEM QSPR models are not so strongly influenced by the selection of the charge calculation approach as the QM QSPR models. The robustness of the EEM QSPR models was subsequently confirmed by cross-validation. The applicability of EEM QSPR models for other chemical classes was illustrated by a case study focused on carboxylic acids. In summary, EEM QSPR models constitute a fast and accurate pKa prediction approach that can be used in virtual screening.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.