Estimation of herbaceous biomass from species composition and cover

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

AXMANOVÁ Irena TICHÝ Lubomír FAJMONOVÁ Zuzana HÁJKOVÁ Petra HETTENBERGEROVÁ Eva LI Ching-Feng MERUNKOVÁ Kristina NEJEZCHLEBOVÁ Martina PREISLEROVÁ Zdenka VYMAZALOVÁ Marie ZELENÝ David

Rok publikování 2012
Druh Článek v odborném periodiku
Časopis / Zdroj Applied Vegetation Science
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Doi http://dx.doi.org/10.1111/j.1654-109X.2012.01191.x
Obor Ekologie - společenstva
Klíčová slova Ellenberg indicator values; plant cover; plant height; productivity; species richness– productivity relationship
Popis Questions: Biomass is an important ecological property, but its measurement is destructive and time-consuming and therefore generally missing for historical vegetation plots. Here we propose and test indirect estimation of herbaceous biomass using models based on easily obtainable variables, namely plant height and cover. We compare these models with Ellenberg indicator values for nutrients(EIVs Nutrients), which are sometimes used as an alternative measure of productivity. Location: Czech Republic,western Slovakia. Methods: Above-ground biomass (dry weight; gm2) was regressed against the following explanatory variables: (1) Cover E1, total percentage cover of the herb layer visually estimated in the field; (2) Biomass estimate-raw, -adjusted and -median, calculated from plant covers and heights (according to a local flora); and(3) mean EIVs Nutrients calculated per plot. For the analyses, we used four data sets containing a total of 469 plots from different vegetation types: ‘Wet meadows’, ‘Dry grasslands’, ‘Fen–dry grassland transects’ and ‘Forest herb layer’. To test the applicability of different biomass estimates we chose an example of a species richness–productivity relationship in the ‘Wet meadows’ data set and describe differences in resulting patterns. Results: Both cover of herb layer and calculated ‘biomass volumes’ were more accurate in predicting biomass dry weight than EIVs Nutrients. The best results were obtained from the Biomass estimate-median model that combines median stand height and total cover of the herb layer. Cover E1 showed relatively tight correlations with biomass, particularly in sparse vegetation, but was a rather poor predictor when cover values were high. This was especially noticeable in application of the Cover E1 model in analysis of the species richness–productivity relationship.Conclusions: In contrast to biomass, cover of the herb layer has a fixed upper limit (100%), which may lead to misinterpretations in dense, structurally diverse vegetation. Most promising is the Biomass estimate-medianmethod, which can be applied both to already sampled plots by calculating median height from average species heights according to local floras and to newly sampled plots using the median of plant heights measured in the field. Therefore, we propose it as a rapid, non-destructive alternative to biomass harvest.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.