Racines d'unités cyclotomiques et divisibilité du nombre de classes d'un corps abélien réel
Title in English | Roots of cyclotomic units and divisibility of the class number of real abelian fields |
---|---|
Authors | |
Year of publication | 2001 |
Type | Article in Periodical |
Magazine / Source | Acta Arithmetica |
MU Faculty or unit | |
Citation | |
Field | General mathematics |
Keywords | cyclotomic units |
Description | The class number $h_K$ of a real abelian field $K$ is known to be difficult to compute. In the paper, $K$ is a genus field of the type $(p,...,p)$ ($l$ times $p$, $p$ is an odd prime). Our main result states that $h_K$ is divisible by $p^{2^l-l^2+l-2}$. |
Related projects: |