An algebraic approach to physical scales

Investor logo

Warning

This publication doesn't include Faculty of Economics and Administration. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

JANYŠKA Josef MODUGNO Marco VITOLO Raffaele

Year of publication 2010
Type Article in Periodical
Magazine / Source Acta Applicandae Mathematicae
MU Faculty or unit

Faculty of Science

Citation
Web http://www.springerlink.com/content/100230/?Content+Status=Accepted&sort=p_OnlineDate&sortorder=desc&v=condensed
Field Theoretical physics
Keywords semi-vector spaces; scales; units of measurement
Description This paper is aimed at introducing an algebraic model for physical scales and units of measurement. This goal is achieved by means of the concept of ``positive space" and its rational powers. Positive spaces are ``semi--vector spaces'' on which the group of positive real numbers acts freely and transitively through the scalar multiplication. Their tensor multiplication with vector spaces yields ``scaled spaces'' that are suitable to describe spaces with physical dimensions mathematically. We also deal with scales regarded as fields over a given background e.g., spacetime.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.