The Late Holocene deglaciation of James Ross Island, Antarctic Peninsula: OSL and 14C-dated multi-proxy sedimentary record from Monolith Lake

Investor logo
Investor logo

Warning

This publication doesn't include Faculty of Economics and Administration. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

ROMAN Matěj PÍŠKOVÁ Anna SANDERSON David C.W. CRESSWELL Alan J BULÍNOVÁ Marie POKORNÝ Matěj KAVAN Jan JENNINGS Stephen James Arthur LIRIO Juan M. NEDBALOVÁ Linda SACHEROVÁ Veronika KOPALOVÁ Kateřina GLASSER Neil F. NÝVLT Daniel

Year of publication 2024
Type Article in Periodical
Magazine / Source Quaternary Science Reviews
MU Faculty or unit

Faculty of Science

Citation
web https://www.sciencedirect.com/science/article/pii/S027737912400194X?via%3Dihub
Doi http://dx.doi.org/10.1016/j.quascirev.2024.108693
Keywords Antarctica; Palaeolimnology; Lake sediments; Radiocarbon; OSL dating; Deglaciation; Diatoms; Faunal subfossils; Holocene; Neoglacial
Description Lentic waterbodies provide terrestrial sedimentary archives of palaeoenvironmental change in deglaciated areas of the Antarctic. Knowledge of the long-term evolution of Antarctic palaeoenvironments affords important context to the current marked impacts of climate change in the Polar regions. Here, we present a comprehensively dated, multi-proxy sedimentary record from Monolith Lake, a distal proglacial lake in one of the largest ice-free areas of the Antarctic Peninsula region. Of the two defined sedimentary units in the cores studied, the lower Unit 1 exhibits a homogeneous composition and unvarying proxy data profiles, suggesting rapid clastic deposition under uniform, ice-proximal conditions with a sedimentation rate of ~1 mm yr-1. 14C and optically stimulated luminescence (OSL) dating bracket the deposition interval to 1.5–2.5 ka BP, with the older age being more probable when compared to independent dating of the local deglaciation. The uppermost 11 cm of the record spans the last ~2.2 ka BP (maximum age), suggesting a markedly decreased sedimentation rate of ~0.05 mm yr-1 within Unit 2. Whereas Unit 1 shows only scarce evidence of biological activity, Unit 2 provides an uninterrupted record of diatoms (with 29 species recorded) and faunal subfossils, including the fairy shrimp Branchinecta gaini. Concentrations of organically-derived elements, as well as diatoms and faunal remains, are consistent, implying a gradual increase in lake productivity. These results provide an example of long-term Antarctic ‘greening’ (i.e. increasing organic productivity in terrestrial habitats) from a palaeolimnological perspective. The boundary between Units 1 and 2, therefore, marks the timing of local deglaciation at the final stages of a period of negative glacier mass balance, i.e. the Mid-Late Holocene Hypsithermal. Subsequent Neoglacial cooling is evidenced by the abated influence of glacial meltwater streams and turbidity decline linked to reduced glacier runoff, although most proxy responses mirror the natural proglacial lake ontogeny.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.