Note on singular Sturm comparison theorem and strict majorant condition

Investor logo

Warning

This publication doesn't include Faculty of Economics and Administration. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

ŠEPITKA Peter ŠIMON HILSCHER Roman

Year of publication 2024
Type Article in Periodical
Magazine / Source Journal of Mathematical Analysis and Applications
MU Faculty or unit

Faculty of Science

Citation
Web https://www.sciencedirect.com/science/article/pii/S0022247X24003135
Doi http://dx.doi.org/10.1016/j.jmaa.2024.128391
Keywords Linear Hamiltonian system; Sturm comparison theorem; Focal point; Principal solution; Strict majorant condition; Second order linear differential equation
Description In this note we present a singular Sturm comparison theorem for two linear Hamiltonian systems satisfying a standard majorant condition and the identical normality assumption. Both endpoints of the considered interval may be singular. We identify the exact form of the strict majorant condition, which is necessary and sufficient for the property that every solution (conjoined basis) of the majorant system has more focal points than the solutions of the minorant system. We provide a formula for the exact number of focal points of any solution of the majorant system, depending on the number of focal points of solutions of the minorant system and on the number of right focal points of a solution of a certain transformed linear Hamiltonian system. This transformed system may be in general abnormal. Our result extends the previous Sturm comparison theorems for linear Hamiltonian systems by Kratz (1995) [18] on a compact interval and by the authors (2020) [35], [36] on an open or unbounded interval. The main result is also new for the second order differential equations, where it extends the singular comparison theorem by Aharonov and Elias (2010) [1].
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.