From nano- to milimolar: dimerization dissociation constant determination

Investor logo
Authors

NÁPLAVOVÁ Alexandra KOZELEKOVÁ Aneta HRITZ Jozef

Year of publication 2022
Type Conference abstract
Citation
Description The self-association of proteins is the cornerstone of protein regulation, aiding proper functionality and interactome [1]. To properly understand the role of dimerization of protein, only the detection of such dimer is not sufficient, but a quantitative analysis is crucial. A parameter widely used to quantify the self-association is the dissociation constant KD [2]. The KD describes equilibrium between monomers and higher oligomers - in general, the lower the KD, the higher the propensity for oligomerization. However, KD of various proteins differs in several orders of magnitude, providing a challenge in its determination [3]. Here we showcase an array of biophysical methods for coverage of the whole relevant concentration range. For proteins with KD in nM region we optimised Förster resonance energy transfer assay [4]. In µM range an analytical size exclusion combined with multiple angle light scattering can be employed [3]. Finally, we used 19F Trp NMR for evaluation in higher concentrations. Moreover, we show application of such methods on the example of 14–3–3 proteins – cellular regulators connected to oncologic and neurodegenerative diseases [5,6].
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

By clicking “Accept Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. Cookie Settings

Necessary Only Accept Cookies