Critical interactions of neuronal transcription factor REST with stabilizer TRF2

Investor logo
Investor logo

Warning

This publication doesn't include Faculty of Economics and Administration. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

BROM Tomáš JANOVIČ Tomáš VEVERKA Pavel STOJASPAL Martin HOFR Ctirad

Year of publication 2022
Type Conference abstract
MU Faculty or unit

Faculty of Science

Citation
Description Glioblastoma is the most common and malignant brain tumor in adults. Glioblastoma is highly resistant to chemotherapy and radiotherapy. So far, there has been no successful treatment. Recent studies revealed a strong correlation between glioblastoma tumorigenicity and the aberrant expression of REST, the main repressor of neural stem cell differentiation [1].

The fate of the REST inside cells is mainly regulated by ubiquitylation. The primary protecting role is played by telomeric factor TRF2 that forms a complex with REST and protects it from ubiquitylation and therefore from proteasomal degradation [2]. TRF2 also forms the core of the shelterin complex that shields chromosome ends against unwanted end-joining and DNA repair machinery. REST indirectly regulates TRF2 expression; thus, it affects shelterin complex formation [3]. REST TRF2 complex disruption is a promising target of molecular therapy that will provide a dual effect on cancer stem cells.

Here, we have investigated in cell localization of REST and TRF2, and we have observed the formation of REST-TRF2 complex directly in the cell nucleus using Proximity ligation assay. We have determined the structure of transcription factor REST using cryo-electron microscopy single-particle reconstruction. A better understanding of the REST-TRF2 complex will provide valuable knowledge in development of drugs against glioblastoma.

1. D. Zhang, Y. Li, R. Wang, Y. Li, P. Shi, Z. Kan, X. Pang, Int. J. Mol. Sci., 17, (2016), 664. 2. Z. Huang, and S. Bao, FEBS letters, 586, (2012), 1602. 3. P. Ovando-Roche, J.S.L. Yu, S. Testori, C. Ho, W. Cui, Stem Cells, 32, (2014), 2111.

Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.