Genetic diversity, evolution and selection in the major histocompatibility complex DRB and DQB loci in the family Equidae

Investor logo

Warning

This publication doesn't include Faculty of Economics and Administration. It includes Faculty of Medicine. Official publication website can be found on muni.cz.
Authors

KLUMPLEROVA Marie SPLICHALOVA Petra OPPELT Jan FUTAS Jan KOHUTOVÁ Aneta MUSILOVA Petra KUBICKOVA Svatava VODICKA Roman ORLANDO Ludovic HORIN Petr

Year of publication 2020
Type Article in Periodical
Magazine / Source BMC Genomics
MU Faculty or unit

Faculty of Medicine

Citation
Web https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-020-07089-6.pdf
Doi http://dx.doi.org/10.1186/s12864-020-07089-6
Keywords Major histocompatibility complex; Family Equidae; MHC exon 2; MHC class II loci; Positive selection; Trans-species polymorphism; Selected amino acid sites
Description Background: The mammalian Major Histocompatibility Complex (MHC) is a genetic region containing highly polymorphic genes with immunological functions. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. The MHC class II sub-region contains genes expressed in antigen presenting cells. The antigen binding site is encoded by the second exon of genes encoding antigen presenting molecules. The exon 2 sequences of these MHC genes have evolved under the selective pressure of pathogens. Interspecific differences can be observed in the class II sub-region. The family Equidae includes a variety of domesticated, and free-ranging species inhabiting a range of habitats exposed to different pathogens and represents a model for studying this important part of the immunogenome. While equine MHC class II DRA and DQA loci have received attention, the genetic diversity and effects of selection on DRB and DQB loci have been largely overlooked. This study aimed to provide the first in-depth analysis of the MHC class II DRB and DQB loci in the Equidae family. Results: Three DRB and two DQB genes were identified in the genomes of all equids. The genes DRB2, DRB3 and DQB3 showed high sequence conservation, while polymorphisms were more frequent at ORB1 and DQB1 across all species analyzed. DQB2 was not found in the genome of the Asiatic asses Equus hemionus kulan and E. h. onager. The bioinformatic analysis of non-zero-coverage-bases of DRB and DQB genes in 14 equine individual genomes revealed differences among individual genes. Evidence for recombination was found for DRB1, DRB2, DQB1 and DQB2 genes. Trans-species allele sharing was identified in all genes except ORB1. Site-specific selection analysis predicted genes evolving under positive selection both at DRB and DQB loci. No selected amino acid sites were identified in DQB3. Conclusions: The organization of the MHC class II sub-region of equids is similar across all species of the family. Genomic sequences, along with phylogenetic trees suggesting effects of selection as well as trans-species polymorphism support the contention that pathogen-driven positive selection has shaped the MHC class II DRB/DQB sub-regions in the Equidae.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.