Bulk atmospheric deposition of persistent organic pollutants and polycyclic aromatic hydrocarbons in Central Europe

Investor logo
Investor logo

Warning

This publication doesn't include Faculty of Economics and Administration. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

NEŽIKOVÁ Barbora DEGRENDELE Céline ČUPR Pavel HOHENBLUM P. MOCHE W. PROKEŠ Roman VAŇKOVÁ Lenka KUKUČKA Petr MARTINÍK Jakub AUDY Ondřej PŘIBYLOVÁ Petra HOLOUBEK Ivan WEISS P. KLÁNOVÁ Jana LAMMEL Gerhard

Year of publication 2019
Type Article in Periodical
Magazine / Source Environmental Science and Pollution Research
MU Faculty or unit

Faculty of Science

Citation
Web http://dx.doi.org/10.1007/s11356-019-05464-9
Doi http://dx.doi.org/10.1007/s11356-019-05464-9
Keywords Bulk atmospheric deposition; POPs; PCBs; OCPs; PAHs; Central Europe; Deposition fluxes
Description Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are ubiquitous and toxic contaminants. Their atmospheric deposition fluxes on the regional scale were quantified based on simultaneous sampling during 1 to 5 years at 1 to 6 background/rural sites in the Czech Republic and Austria. The samples were extracted and analysed by means of gas chromatography coupled to mass spectrometry. For all seasons and sites, total deposition fluxes for Sigma(15)PAHs ranged 23-1100 ng m(-2) d(-1), while those for Sigma 6PCBs and Sigma 12OCPs ranged 64-4400 and 410-7800 pg m(-2) d(-1), respectively. Fluoranthene and pyrene were the main contributors to the PAH deposition fluxes, accounting on average for 19% each, while deposition fluxes of PCBs and OCPs were dominated by PCB153 (26%) and gamma-hexachlorobenzene (30%), respectively. The highest deposition flux of Sigma(15)PAHs was generally found in spring, while no seasonality was found for PCB deposition. For deposition fluxes for Sigma(12)OCPs, no clear spatial trend was found, confirming the perception of long-lived regional pollutants. Although most OCPs and PCBs hardly partition to the particulate phase in ambient air, on average, 42% of their deposition fluxes were found on filters, confirming the perception that particle deposition is more efficient than dry gaseous deposition. Due to methodological constraints, fluxes derived from bulk deposition samplers should be understood as lower estimates, in particular with regard to those substances which in ambient aerosols mostly partition to the particulate phase.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.