Utilization of Red Nonionogenic Tenside Labeling, Isoelectric Focusing, and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry in the Identification of Uropathogens in the Presence of a High Level of Albumin

Warning

This publication doesn't include Faculty of Economics and Administration. It includes Faculty of Medicine. Official publication website can be found on muni.cz.
Authors

HORKA Marie SALPLACHTA Jiri RŮŽIČKA Filip SLAIS Karel

Year of publication 2019
Type Article in Periodical
Magazine / Source ACS INFECTIOUS DISEASES
MU Faculty or unit

Faculty of Medicine

Citation
Web http://dx.doi.org/10.1021/acsinfecdis.9b00045
Doi http://dx.doi.org/10.1021/acsinfecdis.9b00045
Keywords uropathogens; high level of albumin; red nonionogenic tenside; preconcentration and preseparation; isoelectric focusing; matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
Description Cellulose-based preparative isoelectric focusing was used for preseparation and concentration of uropathogens Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Staphylococcus epidermidis, Candida albicans, and Candida parapsilosis in a urine sample containing a high concentration of human serum albumin. For the visibility of the colorless microbial zones in the separation medium, the microbial cells were labeled with red nonionogenic tenside (1-[[4-(phenylazo)-phenyl]azo]-2-hydroxy-3-naphthoic acid polyethylene glycol ester, PAPAN). A very short incubation time, about 2 min, was sufficient for the adsorption of 0.001% (w/v) PAPAN onto the cell surface at the optimized conditions. As low as 10(3) cells of E. coli (pI 4.6) resuspended in 100 mu L of urine sample and spiked with 0.1 mg mL(-1) of human serum albumin (pI 4.8) were successfully preseparated and concentrated using this method. Because the pI values of the labeled microorganisms remained unchanged, the focused red zones of microbial cells were collected from the separation media and further analyzed by either capillary isoelectric focusing or matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The viability of the cells extracted from the collected zones was also confirmed. The proposed method provides reliable, relatively fast, and cost-effective identification of uropathogens in urine specimens with a high level of albumin.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.