Autosomal dominant temporal lobe epilepsy associated with heterozygous reelin mutation: 3 T brain MRI study with advanced neuroimaging methods

Warning

This publication doesn't include Faculty of Economics and Administration. It includes Faculty of Medicine. Official publication website can be found on muni.cz.
Authors

ČESKÁ Katarína AULICKÁ Štefánia HORÁK Ondřej DANHOFER Pavlína ŘÍHA Pavel MAREČEK Radek ŠENKYŘÍK Jan REKTOR Ivan BRÁZDIL Milan OŠLEJŠKOVÁ Hana

Year of publication 2019
Type Article in Periodical
Magazine / Source EPILEPSY & BEHAVIOR CASE REPORTS
MU Faculty or unit

Faculty of Medicine

Citation
Web https://www.sciencedirect.com/science/article/pii/S221332321830121X?via%3Dihub
Doi http://dx.doi.org/10.1016/j.ebcr.2018.10.003
Keywords Autosomal dominant temporal lobe epilepsy; RELN gene; 3 Tesla brain MRI; Functional connectivity; Epileptogenic networks
Description Purpose: Autosomal dominant lateral temporal epilepsy (ADLTE) is a genetic focal epilepsy syndrome characterized by focal seizures with dominant auditory symptomatology. We present a case report of an 18-year-old patient with acute onset of seizures associated with epilepsy. Based on the clinical course of the disease and the results of the investigation, the diagnosis of ADLTE with a proven mutation in the RELN gene, which is considered causative, was subsequently confirmed. The aim of this study was to use 3 Tesla (3 T) magnetic resonance imaging (MRI) and advanced neuroimaging methods in a patient with a confirmed diagnosis of ADTLE. Methods: 3 T MRI brain scan and advanced neuroimaging methods were used in the standard protocols to analyzse voxel-based MRI, cortical thickness, and functional connectivity. Results: Morphometric MRI analysis (blurred grey-white matter. junctions. voxel-based morphometty, and cortical thickness analysis) did not provide any informative results. The functional connectivity analysis revealed higher local synchrony in the patient in the left temporal ( middle temporal gyrus), left frontal (supplementary motor area, superior frontal gyrus), and left parietal (gyrus angularis, gyms supramarginalis) regions and the cingulate (middle cingulate gyrus) as compared to healthy controls. Conclusions: Evidence of multiple areas of functional connectivity supports the theory of epileptogenic networks in ADTLE. Further studies are needed to elucidate this theory. (C) 2018 The Authors. Published by Elsevier Inc.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.