Sufficiency and sensitivity for nonlinear optimal control problems on time scales via coercivity

Investor logo

Warning

This publication doesn't include Faculty of Economics and Administration. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

ŠIMON HILSCHER Roman ZEIDAN Vera Michel

Year of publication 2018
Type Article in Periodical
Magazine / Source ESAIM: Control, Optimisation and Calculus of Variations
MU Faculty or unit

Faculty of Science

Citation
Web http://dx.doi.org/10.1051/cocv/2017070
Doi http://dx.doi.org/10.1051/cocv/2017070
Field General mathematics
Keywords Optimal control problem on time scales; Weak Pontryagin maximum principle; Weak local minimum; Coercivity; Sufficient optimality condition; Sensitivity analysis; Second variation; Controllability
Description The main focus of this paper is to develop a sufficiency criterion for optimality in nonlinear optimal control problems defined on time scales. In particular, it is shown that the coercivity of the second variation together with the controllability of the linearized dynamic system are sufficient for the weak local minimality. The method employed is based on a direct approach using the structure of this optimal control problem. The second aim pertains to the sensitivity analysis for parametric control problems defined on time scales with separately varying state endpoints. Assuming a slight strengthening of the sufficiency criterion at a base value of the parameter, the perturbed problem is shown to have a weak local minimum and the corresponding multipliers are shown to be continuously differentiable with respect to the parameter. A link is established between (i) a modification of the shooting method for solving the associated boundary value problem, and (ii) the sufficient conditions involving the coercivity of the accessory problem, as opposed to the Riccati equation, which is also used for this task. This link is new even for the continuous time setting.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.