Modeling sgB[e] Circumstellar Disks

Investor logo

Warning

This publication doesn't include Faculty of Economics and Administration. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

KURFÜRST Petr FELDMEIER Achim KRTIČKA Jiří

Year of publication 2017
Type Article in Proceedings
Conference The B[e] Phenomenom: Forty Years of Studies
MU Faculty or unit

Faculty of Science

Citation
Field Astronomy and astrophysics
Keywords dense disks or rings; viscous heating; neutral hydrogen layers
Description During their evolution, massive stars are characterized by a significant loss of mass either via spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around these objects is still under debate. Is it a viscous disk or an ouftlowing disk-forming wind or some other mechanism? It is also unclear how various physical mechanisms that act on the circumstellar environment of the stars affect its shape, density, kinematic, and thermal structure. We assume that the disk-forming mechanism is a viscous transport within an equatorial outflowing disk of a rapidly or even critically rotating star. We study the hydrodynamic and thermal structure of optically thick dense parts of outflowing circumstellar disks that may form around, e.g., Be stars, sgB[e] stars, or Pop III stars. We calculate self-consistent time-dependent models of the inner dense region of the disk that is strongly affected either by irradiation from the central star and by contributions of viscous heating effects. We also simulate the dynamic effects of collision between expanding ejecta of supernovae and circumstellar disks that may be form in sgB[e] stars and, e.g., LBVs or Pop III stars.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.