Recurrent sequence exchange between homeologous grass chromosomes

Investor logo

Warning

This publication doesn't include Faculty of Economics and Administration. It includes Central European Institute of Technology. Official publication website can be found on muni.cz.
Authors

WICKER Thomas WING Rod A. SCHUBERT Ingo

Year of publication 2015
Type Article in Periodical
Magazine / Source Plant Journal
MU Faculty or unit

Central European Institute of Technology

Citation
Web http://onlinelibrary.wiley.com/doi/10.1111/tpj.13040/abstract;jsessionid=BCA5A778314EF5EF96F8E9752B61BAD7.f02t04
Doi http://dx.doi.org/10.1111/tpj.13040
Field Genetics and molecular biology
Keywords inter-homeolog recombination; reciprocal translocation; whole-genome duplication; grass ancestor; genome evolution
Description All grass species evolved from an ancestor that underwent a whole-genome duplication (WGD) approximately 70 million years ago. Interestingly, the short arms of rice chromosomes 11 and 12 (and independently their homologs in sorghum) were found to be much more similar to each other than other homeologous regions within the duplicated genome. Based on detailed analysis of rice chromosomes 11 and 12 and their homologs in seven grass species, we propose a mechanism that explains the apparently 'younger' age of the duplication in this region of the genome, assuming a small number of reciprocal translocations at the chromosome termini. In each case the translocations were followed by unbalanced transmission and subsequent lineage sorting of the involved chromosomes to offspring. Molecular dating of these translocation events also allowed us to date major chromosome 'fusions' in the evolutionary lineages that led to Brachypodium and Triticeae. Furthermore, we provide evidence that rice is exceptional regarding the evolution of chromosomes 11 and 12, inasmuch as in other species the process of sequence exchange between homeologous chromosomes ceased much earlier than in rice. We presume that random events rather than selective forces are responsible for the observed high similarity between the short arm ends of rice chromosomes 11 and 12.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.