Ravi Mawale, Milan Alberti, Zhang Bo, Max Fraenkl, Tomas Wagner, Josef Havel
Authors | |
---|---|
Year of publication | 2015 |
Type | Conference abstract |
MU Faculty or unit | |
Citation | |
Description | The AgAsS2 glass has wide applications in optics, optoelectronics and phase change memories [1]. The structure of this glass is still not well understood. Elucidation of a structure might help in the development of this material. The AgAsS2 glass was prepared by the melt-quenched technique. The product was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. The clusters generated during laser desorption ionization (LDI) of AgAsS2 glass were identified by a quadrupole ion trap time-of-flight mass spectrometer (QIT-TOFMS). The formation of singly charged 3 unary (Ag+/- and As3+), 38 binary (AsnSx, AgmSx) and 98 ternary (AgmAsnSx) clusters was proved. Silver rich nano-grains are formed during AgAsS2 glass synthesis. These nano-grains have been identified using TEM analysis and verified also by QIT TOF mass spectrometry. The results show that the structure of AgAsS2 glass is “nanograin-like” where grains are either 1. silver rich “islands” (Agm, m up to 39) connected by arsenic and/or sulphur or arsenic sulphide chains as a kind of "glue" or 2. silver sulphide (Ag2S)m (m =9-20) clusters inter-connected with similar "glue". TOFMS was shown to be a useful technique to study clusters generated from various materials [2-3]. Structural information obtained can be useful for development of ultra-high-density phase-change storage and memory devices using this kind of glass. References: [1] J-L. Adam, X. Zhang. Chalcogenide Glasses: Preparation, Properties and Applications. Woodhead Publishing Limited, UK, 2014. [2] R. M. Mawale, F. Amato, M. Alberti, J. Havel. Generation of new AgmTen clusters via laser ablation synthesis using Ag-Te nano-composite as precursor. Quadrupole ion trap time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2014, 28, 2753. [3] R. M. Mawale, F. Amato, M. Alberti, J. Havel. Generation of AupAgqTer clusters via laser ablation synthesis using Au-Ag-Te nano-composite as precursor: quadrupole ion-trap time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2014, 28, 1601. |
Related projects: |