Comparison of the multivariate and bivariate analysis of corporate competitiveness factors synergy

Investor logo
Authors

ČÁSTEK Ondřej BLAŽEK Ladislav PUDIL Pavel SOMOL Petr

Year of publication 2013
Type Article in Periodical
Magazine / Source Ekonomická revue
MU Faculty or unit

Faculty of Economics and Administration

Citation
web Plný text výsledku
Doi http://dx.doi.org/10.7327/cerei.2013.06.02
Field Management and administrative
Keywords Competitiveness; competitiveness factors; corporate financial performance; multidimensional statistical methods; Sequential Forward Floating Search; synergy; k-Nearest Neighbours
Attached files
Description Corporate competitiveness is influenced by a number of factors. Their impact is not partial, but synergistic. It is necessary to respect the phenomenon of synergy consistently when examining which of these potential competitiveness attributes can really function as these factors. Consequently, feature selection and classification methods of statistical pattern recognition have been used for the multivariate statistical analysis of and search for competitiveness factors. The calculations conducted herein show that the Sequential Forward Floating Search method in combination with k-Nearest Neighbours classification is capable of capturing the synergistic effect of the whole set of factors, providing much better results than simple bivariate analysis methods that test only the partial effects of individual factors.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.